By Josh Kearns
Crowdsourcing is by now thoroughly established as an internet
meme. How do I know this? Because I’m aware of it.
Compared to today’s hip and uber-connected Millennials, I’m a
hopelessly antiquarian Gen-Xer. I do not and hope to never own a smart phone. (My career aspiration is to
eventually go “full Wendell Berry” and refuse to
even use a computer.) The only Rock I know is Classic; I don’t even know
what “Emo” is (or was); anyway, these days I mostly dig on Bluegrass and
Old-Time – you know, “both kinds of music.” I greatly prefer slow travel by
train to blasting around the country (and world) stuffed into an airplane. I’ve
vowed that my dearly loved ’89 Toyota pickup will be the last car I ever own. (It
doesn’t have to last my whole lifetime – just until peak oil drives gas prices
out of range of all but the one-percenters…) And I get all giddy whenever a new
article comes out in Low Tech Magazine.
With that thumbnail sketch of my corn-pone backwardness, you
can understand that by the time an internet trend reaches me, its cutting-edge
has long since dulled.
One such contemporary internet meme for which I am
late-as-usual to the party is: crowdsourcing support for scientific and research
endeavors. I was excited to learn recently about sites such as experiment.com that provide a crowd-funding
platform for research projects. This may turn out to be a viable support
mechanism for “Chemistry Without Borders” projects, like those we undertake at Aqueous Solutions, which often are
difficult to fund through conventional academic channels.
I would be interested to hear from any researchers who have
experience with crowd funding their work – what do you think? Pros? Cons?
Groovy? Or a total drag?
One thing about doing fieldwork is that practical and applied
research projects seem to constantly throw themselves at you. I wrote about one
in last week’s post, calling on the (Bio-) Chemists Without Borders community
to help
us hack a cheap-and-easy field E.coli
water tests.
Another nugget (pun intended) I have been mulling over for a
while now is how to develop a low-cost treatment system for village water
sources impacted by gold mining effluents.
Burma is a country with a lot of mining operations and not a
lot of environmental and public health protections.[1]
Cyanide – a toxin so potent that it gets its own chapter in The
Poisoner’s Handbook[2] –
is by far the most common lixiviant (extraction
agent) used in gold mining, accounting for about 90% of world production.[3]
It’s also used in the recovery of base metal such as copper, lead, and zinc.
Gold mine in Burma.
Image source:
http://thevelvetrocket.com/2011/02/23/photos-of-the-day-gold-mining-in-myanmrarburma/
A number of physical and chemical mechanisms influence the
fate of cyanide released to the environment, including volatilization, sorption
to sediments, oxidation, hydroloysis, photolysis, and biodegradation.[4] Cyanide
reacts relatively quickly to for thiocyanate, which is less toxic but much more
persistent.[5]
In my work and travels in SE Asia, I’ve encountered numerous
individuals and communities concerned about their exposure to mining effluents.
These have included complaints of symptoms consistent with exposure to
thiocyanate, including skin, eye, and respiratory irritations, nausea and
stomach ulcers, and possible neurological effects.
Without epidemiological surveys it is impossible to confirm
exposure to cyanide or cyanate species, and the predominant exposure routes
(occupational, food and drinking water, dermal exposure e.g. during bathing and
clothes washing, etc.). But there is little doubt that mining in Burma heavily
impacts water quality at the local and even regional scales, and that proper
control measures on cyanide release to the environment are non-existent.
It turns out, though, that many garden-variety indigenous
microbes are capable of uptake, conversion, sorption, and/or precipitation of
the cyanide, cyanate, and thiocyanate.[3] Microbial species living in
mine tailings piles can become acclimatized to elevated cyanide and
thiocyanate. Some species, for example the ubiquitous Pseudomonas, are
capable of using cyanide and thiocyanate as their source of carbon and nitrogen
and are particularly effective at degradation.
A variety of fixed-bed bioreactors for cyanide/thiocyanate
degradation have been developed and tested at the lab, pilot, and full scale
with encouraging results.[5] One study found activated carbon to be a
favorable biofilm support medium, due to its high porosity and surface area for
microbial colonization, and its capacity for adsorption of cyanide and
thiocyanate complexes.[6]
This has led me to wonder if we could develop a low-cost
fixed-film bioreactor using locally
generated adsorbent biochar as the support medium, and a cyanide-acclimated
microbial inoculum harvested from local gold mill tailings.
It’s a tough question whether such a system could produce
drinking-water-quality-water, especially in the case of source waters that are
very heavily impacted by mining effluents and therefore are likely to contain
also a host of toxic metals. Although, thiocyanate readily forms complexes with
many transition metals, so some metals removal may also be achievable through
co-precipitation. Furthermore, biochars have also been demonstrated as
effective for some uptake of some heavy metals.[7]
Could the water be made safe for drinking and food
preparation is thus a totally open – and difficult – question. In my
experience, though, many affected communities have worked to secure alternative
sources of water for consumption, but still rely on mining impacted waters for
bathing, personal hygiene, and clothes washing. A cost-effective treatment
system could, therefore, alleviate dermal exposures, or, for example, provide sufficiently
detoxified water for raising fish or watering livestock.
Anyway, just some ideas that come up in day-to-day activities
here in the village. I wonder if we should test the
crowd-funded-science-research waters. What do you think? Anyone want to team up
on this project?
As usual, you can find me on Facebook, and
please “Like” Aqueous
Solutions!
Links to my other posts
[1] At What Price?
Gold Mining In Kachin State, Burma. Images
Asia & Pan Kachin Development Society, November 2004. [http://www.ibiblio.org/obl/docs/gold%20pdf1.pdf]
Vrieze P, Naing Zaw H. In Tenasserim hills, rise in mining threatens
communities. The Irrawaddy,
Wednesday, February 5, 2014.
[http://www.irrawaddy.org/feature/tenasserim-hills-rise-mining-threatens-communities.html]
[2] Blum D. The Poisoner’s Handbook: Murder and the
Birth of Forensic Medicine in Jazz Age New York. Penguin, pubs. 2011. The
book has also been made into a PBS film:
http://www.pbs.org/wgbh/americanexperience/films/poisoners/
[3] Akcil A., Mudder T. Microbial destruction of cyanide wastes in gold mining: process review. Biotechnology
Letters 25: 445–450, 2003.
[4] ATSDR Toxicological Profile for Cyanide.
[http://www.atsdr.cdc.gov/toxprofiles/tp8-c6.pdf]
[5] Gould WD, King M, Mohapatra BR, Cameron RA, Kapoor A,
Koren DW. A critical review on destruction of thiocyanate in mining effluents.
Minerals Engineering 34 (2012) 38–47.
[6] Dictor MC, Battaglia-Brunet F, Morin D, Bories A,
Clarens M. Biological treatment of gold ore cyanidation wastewater in fixed bed
reactors. Environmental Pollution,
Vol. 97, No. 3, pp.287-294.
[7] Mohan D, Sarswat A, Ok YS, Pittman CU. 2014. Organic
and Inorganic Contaminants Removal from Water with Biochar, a Re- newable, Low
Cost and Sustainable Adsorbent- a Critical Review. Bioresource Technology (in press).